
Answers to selected
problems

Derivatives and Integrals

1. The easiest approach is to note that the discontinuities in slope
occur at x = 1 and x = 2 so the function must have an equation of the
form

f(x) = α|x− 1|+ β|x− 2|+ γ

where α, β and γ are to be found. For x > 2

αx− α+ βx− 2β + γ = −5x+ 11

so, equating cofficients, α+β = −5 and −α− 2β+ γ = 11. Proceeding
similarly for 1 < x < 2 and x < 1 gives a further set of equations for
α, β and γ which can be solved to give α = −6, β = 1 and γ = 7 and
f(x) = −6|x− 1|+ |x− 2|+ 7.We can then check, for example, that for
x < 1, f(x) = −6 + 6x+ 2− x+ 7 = 5x+ 3 as required.

3. We have y(x) = xex and hence y′(x) = ex + xex, y′′(x) = 2ex + xex

and y′′′(x) = 3ex + xex.Thus we guess y(n) = nex + xex as is easily
checked by induction.
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The formula for the n-th derivative of the product uv must be valid for
u = x and v = ex, so a = n.
If z = x sin(x) the formula gives (x sin(x))(8) = x(sin(x))(8)+8(sin(x))(7).
At x = 0 this is 8(−1)3 cos(0) = −8.

5. Completing the square in the denominator gives 1 + x+ x2 = (x+
1

2
)2 +

3

4
and letting y =

√
3/2 the integral becomes

2√
3

∫ √3
1/
√
3

dy

y2 + 1
=

2√
3

[
tan−1(y)

]√3
1√
3

=
2√
3

(π
3
− π

6

)
=

π

3
√

3
.

Also, since (1− x)(x2 + x+ 1) = (1− x3)

1

1 + x+ x3
=

1− x
1− x3

= (1− x)(1 + x3 + x6 + . . .).

Multiplying out and integrating term by term gives∫ 1

0

dx

1 + x+ x2
=

[
x+

1

4
x4 +

1

7
x7 + · · · − x− 1

2
x2 − 1

5
x5 − 1

8
x8 . . .

]1
0

= 1− 1

2
+

1

4
− 1

5
+

1

7
+ . . .

from which the result follows.

7.(a) If

f(t) =
t2

(1 + t)(2 + t)2
=

A

1 + t)
+

B

(2 + t)2

then

t2 = A(2 + t)2 +B(1 + t) = A(4 + 4t+ t2) +B(1− t).

Comparing coefficients gives A = 1 and B = −4.
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(b) Integrating f(t) between 0 and x gives∫ x

0
f(t)dt =

[
ln(1 + t) + 4(2 + t)−1

]x
0

= ln(1 + x)− x

1 + x/2

provided that the argument of the logarithm is positive, i.e. provided
x > −1.

(c) Put x = 2/5 to obtain ln(75) > 2/5
6/5 = 1/3 and hence, exponentiating,

e < (7/5)3.

(d) (i)

f(x) =
1

1 + x
− 4

(2 + x)2

=1− x+ x2 − x3 + . . .−
[
1− x+

(−2)(−3)

2

(x
2

)2
+ . . .

]
=
x2

4
− x3

2
+ . . .

valid for |x| < 1 (ii) From the identity proved in part (b) the simplest
appraoch ois to integrate the preceeding series:

ln(1 + x)− x

1 + x/2
=

∫ x

0
f(t)dt =

x3

12
− x4

8
+ . . .

also valid for |x| < 1.

9. We have J0 =

∫ π/2

0
dθ = π/2 and J1 =

∫ π/2

0
cos(θ)dθ = 1. Then,

integrating by parts,

Jm =

∫ π/2

0
cos(m−1)(θ)d sin(θ)

=
[
sin(θ) cos(m−1)(θ)

]π/2
0

+

∫ π/2

0
(m− 1) cos(m−1)(θ) sin2(θ)dθ
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Replacing sin2(θ) with 1− cos2(θ) and re-arranging, we get

Jm =
(m− 1)

m
Jm−2.

Hence

J2n =
2n− 1

2n

2n− 3

2n− 2
· · · 1

2
J0 and J2n+1 =

2n

2n+ 1

2n− 2

2n− 1
· · · 2

3
J1.

We can therefore findJ2n/J2n+1, using the values of J0 and J1:

J2n
J2n+1

=
2n− 1

2n

2n− 3

2n− 2
· · · 1

2
· π

2
· 2n+ 1

2n

2n− 1

2n− 2
· · · 3

2

=

(
3 · 5 · · · (2n− 1)

2 · 4 · · · 2n

)2

(2n+ 1)
π

2

which gives nthe required expression for π/2 on rearrangement. Now,
since cos(θ) ≤ 1 we have

J2n+1 =

∫ π/2

0
cos2n+1(θ)dθ ≤

∫ π/2

0
cos2n(θ)dθ = J2n

and, continuing, that J2n+1 ≤ J2n ≤ J2n−1. Dividing by J2n+1, it
follows that

J2n+1

J2n+1
≤ J2n
J2n+1

≤ J2n−1
J2n+1

=
2n+ 1

2n
.

Taking the limit as n→∞ gives

1 ≤ lim
n→∞

J2n
J2n+1

≤ lim
n→∞

J2n−1
J2n+1

≤ 1

and hence that both limits tend to 1. The final result follows by taking
the limit of the expression for π/2 and slightly rearranging the bracket.
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Elementary Functions

1.
d

dx

[
1

2
ln

(
1 + x

1− x

)]
=

1

2

(
1

1 + x
+

1

1− x

)
=

1

1− x2
.

Also ∫
1. tanh−1(x)dx = x tanh−1(x)−

∫
x

1− x2
dx

= x tanh−1(x) +
1

2
ln(1− x2) + c.

3. Let sinh−1(x) = y. Then x = sinh(y) and 1 = cosh(y)
dy

dx

so
dy

dx
=

1√
1 + y2

.

Also, ∫
1. sinh−1(x)dx = x sinh−1(x)−

∫
x√
1+x2

dx

= x sinh(x)−
√

1 + x2 + c.

Functions, limits and series

1. The denominator of each term has a factor (x+ 2) so we have

f(x) =
1

(x+ 2)

[
x3 + 4x2 +Ax+ 1

x
− x3 + x2 − 4

(x− 2)

]
=

x3 + (A− 8)x2 + (5− 2A)x− 2

x(x− 2)

For the expression to have a finite limit the numerator must have a
factor (+2) (or, equivalently, equal 0 for x = −2). Factorising

x3 + (A− 8)x+ (5− 2A)x− 2 = (x+ 2)(x2 + (A− 10)x+ 1)
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provided that (comparing the terms in x) 5 − 2A = 2(A − 10) − 1 or
A = 13/2. Then

f(x)

which tends to 0 as x → −2. From the simplified expression for f(x)
we see that as x → 0+, f(x) → −1/(−2x) → +∞; as x → 0−,
f(x) → −∞; as x → 1, f(x) → (3/2)/(−1) = −3/2; and as x → ±∞,
f(x) x2/x2 = 1.

3. (a)Dividing the numerator by the denominator (and factorising the
denominator) gives

f(z) = 3z +
−6z2 + 10z − 2

z(z − 2)(z − 1)

= 3z +
a

z
+

b

z − 2
+

c

z − 1
.

Cross-multiplying and comparing coefficients (or any other method
forfinding partial fractions) gives

(a+ b+ c)z2 − (3a+ b+ 2c)z + 2a = −6z2 + 10z − 2

from which a = −1, b = −3 and c = −2.

(b)

f(z) = 3z − 1

z
+ 2(1 + z + z2 + . . .) +

3

2
(

(
1 +

z

2
+
(z

2

)2
+ . . .

)
= −1

z
+

7

2
+

23

4
z + . . . .

(c)∫ b

a
f(z)dz =

[
3

2
z2 − ln(z)− 3 ln |z − 2| − 2 ln |z − 1|

]b
a

=
3

2
(b2 − a2)− ln(

b

a
)− 3 ln

(
1− b/2
1− a/2

)
− 2 ln

(
1− b
1− a

)
.
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If 2 > b > 1 (and a < 1) the term (1− b) is replaced by b− 1; if a < 1
and b > 2 in addition, (1 − b/2) is replaced by (b/2 − 1); if 2 > a > 1
and 2 > b > 1 then 1− a is replaced by a− 1 also.

5. NOT DONE

7. We have cos(θ) = 1− θ2

2
+
θ4

4!
+ . . . and hence, cos(θ) sec(θ) = 1

gives

(a) (
1− θ2

2
+
θ4

4!
+ . . .

)(
a0 + a1θ + a2θ

2 + . . .
)
.

Comparing coefficients, we get a0 = 0, a1 = 0, a2 = a1/2 = 1/2,
a3 = 0, a4 = a2/2 − a0/24 = 1/4 − 1/24 = 5/24, a6 = a4/2 − a2/4! +
a0/6! = 5/48− 1/48 + 1/(30× 24) = 61/720.

(b) Hence, sec(0) = 1, and differentiating the series and putting θ = 0,
sec(2)(0) = 2a2 = 1, sec(4)(0) = (4!)a4 = 5 and sec(6)(0) = (6!)a6 = 61.

(c) From the series

lim
θ→0

[
sec(θ)− 1

θ2

]
= 1/2

and from l’Hôpital’s rule,

lim
θ→0

[
sec(θ)− 1

θ2

]
= lim

θ→0

[
sec(θ) tan(θ)

2θ

]
= lim

θ→0

[
sec2(θ)

2

sin(θ)

θ

]
=

1

2

9. (i) From (1− x)−1 = 1 + x+ x2 + . . ., we get∫
dx

1− x
= − ln(1− x) = x+

x2

2
+
x3

3
+ . . . .

(ii) Obviously − ln(1− x) > x+ x2/2 because we are omitting positive
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terms. Also

− ln(1− x) = x+
x2

2
+
x3

3
+
x4

4
+ . . .

= x+
x2

2
+
x3

3

(
1 +

3x

4
+

3x2

5
+ . . .

]
< x+

x2

2
+
x3

3

(
1 + x+ x2 + . . .

)
= x+

x2

2
+

x3

3(1− x)

Let x = 1/10 then

ln(
10

9
= − ln(

9

10
= − ln(1− 1

10
) >

1

10
+

1

200
=

21

200

by less than
x3

3(1− x)
=

1

2700
or

1

2700
/

21

200
× 100 % or about 1

3 %.

(iii) From the series

lim
x→0

ln(1− x)− x
x

= lim
x→0

x2/2

x
= 0,

and from l’Hôpital’s rule,

lim
x→0

1
1−x − 1

1
= 0.

11. (a)

∫
(x+ 1)exdx = [(x+ 1)ex]−

∫
exdx = xex + c.

Either similarly, or putting x = −y gives∫
(x− 1)e−xdx =

∫
(y + 1)eydy = yey + c = −xe−x + c.

(b) At x = 2, 2e−2 = 3Ae2, so A = 1
3e
−4.
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(c)

∫ X

2
f(x)dx =

[
−xe−x

]X
2

= 2e−2 −Xe−X .∫ ∞
2

f(x)dx = lim
X→∞

∫ X

2
f(x)dx = 2e−2.

(d)

∫ 2

Y
f(x)dx = [Axex]2Y = 2Ae2 − Y AeY → 2Ae2 (as Y → −∞) =

2
3e
−2.

Hence

∫ ∞
−∞

f(x)dx = (2 +
2

3
)e−2 =

8

3
e−2.

Vectors

1. The direction of the line is t = d− c so the line is r = c + λt.

DIAGRAM

For a point r in the plane, r−a is in nthe plane and hence perpendicular
to the normal to the plane n. Thus (r− a) · n = 0.

At the point of intersection, r = c + λt and r · n = a · n. Therefore
(c+ λt) ·n = a ·n from which λ = [(a− c) ·n]/t ·n. Hence the pin tof
intersection is

r = c +
(a− c) · n

t · n
t.

If a = d then λ = 1 and the intersection is at r = c + t = d.

3 (ii) Interchanging ”dot and cross”: (a × b) · (c × d) = a · (b × (c ×
d)) = (a · c)(b · d)− (a · d)(b · c).

[a× b]× (c× d) = [a× b] · dc− [a× b] · cd or, in temrs of the scalar
triple product, [a,bd]c− [a,b, c]d. (Equivalently [b, c,d]a− [a, c,d]b.)

5. For simplicity we put the origin at O. Then −a+k = 1
2(b−a) from

which a−b = 2a− 2k. The diameter is |b−a| = 2|a−k| = 2[(a−k) ·
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(a− k))]1/2 = 2(a2 − 2a · k + k2)1/2 = 2(4− 2 + 1)1/2 = 2
√

3.

7. (i) r = c + λa + µb

(ii) Taking the scalar product with a×b gives r · (a×b) = c · (a×b).
Putting in the given values we get a×b = (−11, 7, 1) and −11x+ 7y+
z = 4 as the equation of the plane.

(iii) The line is r = c + ν(a× b) or (x, y, z) = (1− 11ν, 2 + 7ν, 1 + ν).
This cuts the (x, y) plane when 1 + ν = 0) i.e. at d = (12,−5, 0).

(iv) The x−axis is y = 0, z = 0 so the plane cuts the x−axis at
x = −4/11 so m1 = (−4/11, 0, 0). Similarly m2 = (0, 4/7, 0) and
m3 = (0, 0, 4).

(v) The sides of the tetrahedron are s1 = d −m1 = (13611 ,−5, 0), s2 =
d−m2 = (12,−39

7 , 0) and s3 = d−m3 = (12,−5,−4). The volume of
the tetrahedron (13 base × height) = 1

3(s1 · s2 × s3 = 912/77.

9. The unit normal n to the plane n · r = p is here n = (3,−1, 1)/
√

11.
The angle θ between n and a is given by cos(θ) = n · p/|n||p| = (3 +
2)/
√

11
√

5 =
√

(5/11. Thus θ = 47.6◦. The line r = λa cuts the plane
at λa · n = p i.e. at λ = 1/ cos(theta) or r =

√
11/5(1, 0, 2).

11. The line is r =
√

3/2k + λ/
√

3(i + j + k) so point at unit distance
from O is given by |r| = 1 or (λ2/3 + λ2/3 + (λ/

√
3 +
√

3/2)2) = 1
from which λ = −3/2 or 1/2. Taking λ = 1/2 the line l2 is r = µb =

µ( 1
2
√
3
, 1
2
√
3
,
√
3
2 + 1

2
√
3

= µ

2
√
3
(1, 1, 4). The normal to the required plane is

perpendicular to l1 and l2 hence in the direction n = t×b = (3,−3, 0).
The plane is therefore r · n = a · n or 3x− 3y = 0.
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Matrices

1.

det

1− λ 3 0
3 −2− λ −1
0 −1 1− λ

 = 0

if
(1− λ)[(−2− λ)(1− λ)− 1]− 3(1− λ) = 0

so
λ = 1 or λ2 + λ− 12 = 0

hence if λ = 1, λ = 3 or λ = −4. To find the eigenvectors x we solve the
simultaneous equations (A−λI)x = 0 for these values of λ in turn. The
corresponding eigenvectors are k(1, 0, 3), k(−3,−2, 1) and k(−3, 5, 1).
We can check that the eigenvectors are mutually orthogonal,. For ex-
ample: (1, 0, 3) · (−3, 5,−1) = 0. Now 1 0 3

−3 −2 1
−3 5 1

1 3 0
3 −2 −1
0 −1 1

1 −3 −3
0 −2 5
3 1 1


=

 1 0 3
−3 −2 1
−3 5 1

1 −9 12
0 −6 −20
3 3 −4


=

10 0 0
0 48 0
0 0 −140


3. Let

A =

1 3 2
2 1 3
3 2 1 + µ

 .
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The system has no solution if detA = 0 which occurs for µ = 18/5.
Kramer’s rule gives

y = −det

1 3 2
4 5 0
3 2 1 + µ

 / detA = 0

if µ = 1. Then, similarly z = 39/(18−5µ) = 3 and x = 4−3y−2z = −2.
Alternatively we reduce the system to triangular form:

 1 3 2 4
2 1 3 5
3 2 1 + µ 0


R3 → R3−R2−R1

R2 → R2− (2×R1)
−−−−−−−−−−−−−−−−−→

 1 3 2 4
0 −5 −1 −3
0 −2 µ− 4 −9

 .

R2 → R2×−5 R3→ R3×−2
R3 → R3−R2)
−−−−−−−−−−−−−−−−−−−−−−−−→

 1 3 2 4
0 10 2 6
0 0 18− 5µ 39

 .

From which we can read off the results.

5.

det

1− λ 0 2
0 −1− λ 0
3 0 2− λ

 = 0

if (1−λ)(−1−λ)(2−λ)+6(1+λ) = 0 hence if λ = −1 or 4λ2−3λ−4 = 0
or λ = 4 or −1 (again). Thus we check2 0 2

0 0 0
3 0 3

2 0 2
0 0 0
3 0 3

−3 0 2
0 −5 0
3 0 −2

 =

10 0 0
0 0 0
15 0 15

−3 0 2
0 −5 0
3 0 −2


= 0.

Expanding (A + I)(A + I)(A− 4I) = 0 gives

A3 −−2A2 − 7A− 4I = 0
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and hence (multiplying through by A−1 and re-arranging)

4A = A2 − 2A− 7I

which works out to

A−1 =
1

4

−2 0 2
0 −4 0
3 0 −1

 .

We can check this by showing it gives the unit matrix when multiplied
by A.

Complex Numbers

1. The rule for quadratics gives

z =
1

2

[
5i±

√
−25− 4(i− 7)

]
or z = 1

2(5i ±
√

3− 4i). We therefore have to find this square root in
the form a + ib. It is (marginally) easier to take the square root of
3 + 4i since this is in the first quadrant so all angles are positive, and
then to take the complex conjugate. To take the square root we write
3 + 4i =

√
32 + 42eiψ = 5eiψ where tan(ψ) = 4/3. Thus, sin(ψ) = 4/5

and cos(ψ) = 3/5. We calculate cos(ψ/2) and sin(ψ/2) from the double
angle formulae: for example, 1 − 2 sin2(ψ/2) = cos(ψ) = 3/5. Finally√

3− 4i =
√

5e−iψ/2 =
√

5(cos(ψ/2) − i sin(ψ/2)) = 2 − i. So for the
solution of the quadratic we have z = 5

2 i± (1− i/2) = 1+2i or −1+3i.
Finally Q = (z−z1)(z−z2) = (z−1−2i)(z+1−3i) which can (should!)
be checked by multiplying out the brackets.

3. We have

ez = exp(r cos(θ) + ir sin(θ)) = er cos(θ)(cos(r sin(θ)) + i sin(r sin(θ))).
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So Im(ez) = er cos(θ) sin(r sin(θ)) and Re(ez) = er cos(θ) cos(r sin(θ)).
Then

Im(ez) = Im(1 + z +
1

2!
z2 + . . .)

= Im(z) + Im(z2/2!) + . . .

= Im(reiθ) + Im(r2e2iθ) + . . .

= r sin(θ) +
1

2!
r2 sin(2θ) +

1

3!
r3 sin(3θ) + . . . .

Thus

lim
r→0+

[
1

r
er cos(θ) sin(r sin(θ)) + . . .

]
= lim

r→0+

[
sin(θ) +

1

2!
sin(2θ) + . . .

]
= sin(θ).

The same result is obtained from l’Hôpital’s Rule by differentiation
with respect to r.

5(i) 1 + eiθ = 1 + e2iφ = 2eiφ(e−iφ + eiφ)/2 = 2eiφ cos(φ).

(ii)(1 + eiθ)n = 1 + neiθ +

(
n
2

)
e2iθ + . . . . Thus

Re(1 + eiθ)n = 1 + n cos(θ) +

(
n
2

)
cos(2θ) + . . .

= Cn

= Re(2eiφ cos(φ))n

= (2 cos(φ))n cos(nφ)

which is the required result. For 2π/3 < θ < 4π/3 we have π/3 <
φ < 2π/3 hence 0 < cos(φ) < 1 and hence (cos(φ))n → 0 as n → ∞.
Also | cos(nφ)| < 1 so Cn → 0 (with increasingly rapid but smaller
oscillations).

7. Let P (z) = z3 + (2 + i)z2 − (1 + 4i) − 2 + 3i. Then P (i) = 0 by
substitution and hence, by inspection, P (z) = (z − i)(z2 + (2 + 2i)z −
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(3 + 2i)) = 0. The solution of the quadratic is z = 1 + i ±
√

(3 + 4i)
Then

√
(3 + 4i) = 2 + i from problem 1. Thus, z = 3 + 2i or z = −1.

9.

exp(xeiθ) =
∑ xneinθ

n!
=
∑[

xn cos(nθ)

n!
+ i

xn sin(nθ)

n!

]
=

1

2

(
exp(xeiθ) + + exp(xe−iθ)

)
+

i

2i

(
exp(xeiθ)− exp(xe−iθ)

)
= ex cos(θ) cos(x sin(θ)) + iex cos(θ) sin(x sin(θ))

=

(
1 + x cos(θ) +

x2

2!
cos2(θ) +

x3

3!
cos3(θ) +

x4

4!
cos4 θ + . . .

)
×
(

1− x2

2!
sin2(θ) +

x4

4!
sin4(θ) + . . .

)
+ i (. . .) .

Comparing the real coefficients of x4:

1

4!
cos(4θ) = −1

4
cos2(θ) sin2(θ) +

1

4!
sin4(θ) +

1

4!
cos4(θ)

or cos(4θ) = −6 cos2(θ) sin2(θ)+sin4(θ)+cos4 θ. Considering the imag-
inary parts gives sin(4θ) = 4 cos3(θ) sin(θ)− 4 cos(θ) sin3(θ).

Differential Equations

1. For a trial solution y = epx the auxiliary equation is p2 + 3p + 2 =
(p+ 2)(p+ 1) = 0 so the CF is yCF = ae−2x + be−x. For a PI we write
cos(x) = Re{eix} and solve y′′ + 3y′ + 2y = eix and take the real part.
We try yPI = Aeix giving −A + 3iA + 2A = 1 or A = (1 − 3i)/10.
Thus yPI = Re{(1− 3i)eix/10} = 1

10(cos(x) + 3 sin(x)) and the general
solution is y = yCF + yPI . Puting in the boundary condition y(0) =
11/10 gives a + b = 1 and y′(0) = −7/10 gives 2a + b = 1 from which
a = 0 and b = 1. Thus the solution is y = e−x + 1

10 [cos(x) + 3 sin(x)].
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3. For a trial solution y = epx the auxiliary equation is p2 − p − 2 =
(p−2)(p+ 1) = 0 so p = 2 or p = −1. The solution satisfying y → 0 as
x→ +∞ is y = ae−x and then y(0) = 1 requires a = 1 so the required
solution is y = e−x.

5. For the CF we get zCF = et(Aeit +Be−it). For the PI we try

z = (a+ bt)e2it

ż = [2i(a+ bt) + b]e2it

z̈ = {2i[2i(a+ bt) + b] + 2ib}e2it.

Substituting and comparing coefficients of powers of t we get

(−2 + 4i)a+ (−2 + 4i)b = 2 and b(1 + 2i)t = 5t,

hence a = −2 and b = (1− 2i). The general solution is therefore

z = et(Aeit +Be−it) + [(1− 2i)− 2]e2it.

The boundary condition z(0) = 0 gives A+B = −2 and ż(0) = 0 gives
i(A−B) = −1+6i−(A+B) from which A = −1

2−2i and B = −5
2 +2i.

7. We solve y′′ + 2y′ + 2y = Im{e2ix} and take the imaginary part of
the solution. The solutions of the homogeneous equation are e(−1±i)x

so the CF can be written as yCF = ex[a cos(x) + b sin(x)]. For a PI we
try y = Ae2ix giving A = − 1

10(1 + 2i). Then Im{− 1
10(1 + 2i)e2ix} =

− 1
10 sin(2x)− 1

5 cos(2x). The general solution is

y = e−x[cos(x) + b sin(x)]− 1

10
sin(2x)− 1

5
cos(2x)

and the boundary conditions give, from y(0) = 0, a = 1/5 and from
y(π/2) = 0, b = −1

5e
π/2.

9. The general solution is y = ae3t + be−4t − 1
12e
−t.

This remains finite as t → ∞ if a = 0. Then, y(0) = a + b − 1
12 and

y′(0) = 3a−4b+ 1
12 . Putting a = 0 and eliminating b gives the required
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relation:
4y(0) + y′(0) = −1/4.

11. (i) We have ∫
dy√

(1− y2)
= sin−1(y) = x4/4 + φ

φ an arbitrary constant, and hence y = sin(x4/4 + φ).

(ii) The integrating factor is exp

(∫
cos(x)

sin(x)

)
dx = exp

(∫
d sin(x)

sin(x)

)
= exp[ln(sin(x))] = sin(x) so the equation can be written as

1

sin(x)
(y sin(x))′ = 2 cos(x)

from which y sin(x) = − sin2(x) + c or y = − sin(x) + c/(sin(x)).

(iii)y = ae3x + bex, with a and b arbitrary constants.

(iv) The auxiliary equation has the repeated root p = 2 so the solution
is of the form y = (a+ bt)e2x with a and b arbitrary constants.

13. (i) We write this as y′/y = 3x2 which integrates to y = A exp(x3).

(ii) Multiplying through by sin(x) the equation becomes (cos(x)y)′ =
2x which integrates to y = (x2 + c)/ cos(x).

(iii) Since the auxiliary equation has 5 as a repeated root the solution
is y = (a+ bx)e5x.

(iv) Taking y = Aex as the trial solution for a PI gives A = 1. The
general solution is y = ae4x + be3x + ex.
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Multiple Integrals

1. dV = r2 sin(θ)dθdφ.
We have

I =

∫ 2π

0

∫ ∞
0

∫ π

0

1

r
exp[ir cos(θ)− εr]r2d(− cos(θ))drdφ

= −2π

∫ ∞
0

[
1

i
exp(ir cos(θ))

]−1
1

e−εrdr

= 2πi

∫ ∞
0

[
e−ir−εr − eir−εr

]
dr

= 2πi

[
e−ir−εr

i+ ε
− eir−εr

i− ε

]∞
0

= 2πi

[
− 1

i+ ε
+

1

i− ε

]
=

4π

1 + ε2

from which the result follows by taking the limit ε→ 0.

3. The element of solid angle on the surface is dΩ = dA cos(i)/r2 where
dA = adφdz, r = (a2 + z2)1/2 and the angle between the radial vector
from the origin and the normal at a point on the surface is given by
cos(i) = a/(a2 + z2)1/2. It remains to figure out the limits of z and
φ. The limits for z are ±x i.e. ±a cos(φ). Since x is positive φ must
lie between −π/2 and +π/2. Putting this together gives the required
result.
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Partial Derivatives

1. x = r cos(θ), y = r sin(θ) implies r2 = x2 + y2 so 2r
∂r

∂x
= 2x or

∂r

∂x
=
x

r
. Similarly

∂r

∂y
=
y

r
.

If g(r, θ) = f(r) sin(θ) = yF (r) then

(i)
∂g

∂x
= y

dF

dr

∂r

∂x
=
xy

r

dF

dr

(ii)
∂g

∂y
= F +

y2

r

dF

dr
(iii)

∂2g

∂x2
+
∂2g

∂y2
=

[
y

r
− xy

r2
x

r
+
y

r
− y3

r3
+

2y

r

]
dF

dr
+

[
xy

r

x

r
+
y3

r2

]
d2F

dr2

= y

(
d2F

dr2
+

3

r

dF

dr

)
= 0

if

F ′′ +
3

r
F ′ =

1

r3
(
r3F ′

)′
= 0

which integrates to F = B/r2 + A and hence f(r) = B/r + Ar where
A and B are constants.

3. f(x, y) = x4 + 2x2 + 3xy + 3y so fy = 3x + 3 = 0 if x = −3
and fx = 4x3 + 4x + 3y = 0 if y = 40. So the stationary point is
(−3, 40) and f(−3, 40) = −141. Then fxx(−3, 40) = 12x2 + 4 = 112,
fxy(−3, 40) = 3, and fyy(−3, 40) = 0 so the Taylor series is f(x, y) =
−141+56(x+3)2+3(x+3)(y−40) = −141+(x−3)[56(x+3)+3(y−40)].
Thus, putting for example x = −3 + 3/56 we find f(x, y) > f(−3, 40)
if y > 40 and f(x, y) < f(−3, 40) if y < 39. Thus the stationary point
is neither a maximum nor a minimum.

5. f(x, y) = x4− 2x2 + y3− 3y so fx = 4x3− 4x = 0 if x = 0 orx = ±1
and fy = 3y2 − 3 = 0 if y = ±1. Then fxx = 12x2 − 4, fxy = 0 and
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fyy = 6y. Thus, if ∆(x, y) = fxxfyy − fxy2, for the six stationary
points we have

(a) ∆(0, 1) = −24, fxx < 0, maximum

(b) ∆(0,−1) = 24, saddle

(c) ∆(1, 1) = 48, saddle

(d) ∆(1,−1) = −48, fxx > 0, minimum

(e) ∆(−1, 1) = 48, saddle

(f) ∆(−1,−1) = −48, fxx > 0, minimum

Near (1, 1), f(1.1, 1.1) ≈ −3 + 4(x− 1)2 + 3(y− 1)2 = −3 + 7× 10−2 so
the percentage error is 7× 10−2/3 ≈ 2.3%. Near (2, 2) we can use the
binomial expansion to find the linear terms in the Taylor series (the
quadratic ones will be smaller) so f(2 + δ, 2 + ε) ≈ 16(1 + 2δ)− 8(1 +
δ) + 8(+3ε/2− 6(1 + ε/2) = 10 + 24δ+ 9ε. Thus we take δ = +0.2 and
ε = +0.2 for the maximum error giving f ≈ 16.6 so the percentage error
is 6.6/10 or 66%. The function is slowly varying around a stationary
point, so a small error in the arguments gives only a small (second
order) error in the function. Conversely, near a stationary point a very
accurate measurement of the function is required to fix the arguments.

7. f(x, y) = xy + 1/x + 1/y so fx = y − 1/x2 = 0 if y = 1/x2 and
fy = x − 1/y2 = 0 if x = 1/y2 = x4 (provided x 6= 0). The only
solution is (1, 1). Then fxx(1, 1) = 2/x3 = 2 and fxy = 1, fyy = 2.
Thus, fxxfyy − f2xy = 3 > 0 at (1, 1) so this is a saddle point.

9. f(x, y) = ln(x) − x/y2 − 2y so fx = 1/x − 1/y2 = 0 if x = y2,
(provided x 6= 0) and fy = −2x/y3−2 = 0 if x = −y3. Thus, we require
y2 = −y3 which gives (1,−1) as the only solution. Then fxx(1,−1) =
−1/x2 = −1, fxy(1,−1) = −2/y3 = 2 and fyy(1,−1) = 6x/y4 = 6.
Thus fxxfyy − f2xy = −10 < 0 at (1,−1) and fxx < 0 so this is a
maximum.
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Partial Differential Equations

1.

y(x, t) =
1

2
F (x− ct) +

1

2
F (x+ ct) +

1

2c

∫ x+ct

x−ct
G(s)ds

Hence y(x, 0) = F (x)+ 1
2c

∫ x
x G(s)ds = F (x) and ∂y/∂t(x, 0) = − c

2F
′(x)+

c
2F
′(x) + 1

2c [cG(x)− (−c)G(x)] = G(x). That this is a solution of the
wave equation can be verified by direct differentiation using ∂F (x −
ct)/∂t = −c∂F (x− ct)∂x = cF ′ etc.

3. Near the origin the waveform is 1
2a(l+(x−ct))+ 1

2a(l−(x+ct)). At
x = 0 both contributions vanish for t = l/c. The parts of the waveform
at rest for t > l/c are x < −ct−l, x > ct+l and −ct+l < x < ct−l. It is
perhaps easiet to see this from the picture, rather than algebraically, by
noting that the evolution consists of one half of the triangular waveform
moving to the right and the other half moving to the left.

5. Seeking a solution of the form y(x, t) = X(x)T (t) we deduce that
T̈ = −ω2 and X ′′ = −ω2/c2 hence that y is a sum of products of
cos(ωt) or sin(ωt) with cos(ωx/c) or sin(ωx/c). The condition y(x, 0) =
B sin(πx/l) requires ω = cπ/l and y(x, t) = sin(πx/l)(A sin(πct/l) +
B cos(πct/l). Finally, ∂y/∂t(x, 0) = v sin(πx/l) gives A = lv/πc.

Evaluating E = ẏ2 + (πc/l)2y2 with y = sin(πx/l)(B cos(πct/l) +
(lv/πc) sin(πct/l)) gives E = sin2(πx/l)(v2 +B2)(πc/l)2 which is con-
stant in time at each value of x.

7. The separable solution satisfying the conditions at x = 0 and x = l
is y(x, t) =

∑
n(an sin(nπct/l) + bn cos(nπct/l)) sin(nπx/l). To satyisfy

∂y/∂t(x, 0) = 0 we set an = 0 and to satisfy y(x, 0) = a sin(πx/l) +
b sin(3πx/l) we must have

y(x, t) = a cos(πct/l) sin(πx/l) + b cos(3πct/l) sin(3πx/l).
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9. The general solution gives

y(x, t) =
1

2
e−(x−ct)

2
+

1

2
e−(x+ct)

2
+

1

2c

∫ x+ct

x−ct
cxe−x

2
dx

=
1

2
e−(x−ct)

2
+

1

2
e−(x+ct)

2
+

1

4

[
−e−x2

]x+ct
x−ct

=
3

4
e−(x−ct)

2
+

1

4
e−(x+ct)

2

as required. After a sufficiently long time the maximum displacement of
the string will be 3

4 (the peak moving to the right). Thus the maximum
will be at x = 0 as long as the displacement at x = 0 is greater than 3

4 ,

hence for a time given by y(0, t) = 3
4e
−(ct)2 + 1

4e
−(ct)2 = e−(ct)

2
> 3/4

or t < 1
c

[
ln(43)

]1/2
.

Fourier Series

1. f(θ) = θ2(−π ≤ θ < π) is an even function so we seek a series
representation f(θ) = 1

2a0 +
∑

n an cos(nθ). We have

a0 =
1

π

∫ π

−π
θ2dθ = 2π2/3

an =
1

π

∫ π

−π
θ2 cos(nθ)dθ

=
1

π

[
sin(nθ)

n
θ2
]π
−π
− 2

nπ

∫ π

−π
θ sin(nθ)dθ

=
−2

nπ

[
−θ cos(nθ)

n

]π
−π

+
2

πn2

∫ π

−π
cos(nθ)dθ

=
−2

n2π
[−π cos(nπ) + π cos(−nπ)]

=
4

n2
cos(nπ) =

4

n2
(−1)n
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Thus θ2 =
π2

3
+ 4

∞∑
1

(−1)n

n2
cos(nθ).

Putting θ = 0 gives
π2

12
=
∑ (−1)n+1

n2
.

3. We write sin(πx) = 1
2a0 +

∑
an cos(nπx) with

a0 = 2

∫ 1

0
sin(πx)dx =

2

π
[− cos(πx)]10 = 4/π

an = 2

∫ 1

0
sin(πx) cos(nπx)dx =

∫ 1

0
[sin((n+ 1)πx)− sin((n− 1)πx)] dx

=
1

π(n+ 1)
[cos((n+ 1)πx)]10 −

1

π(n− 1)
[cos((n− 1)πx)]10

=
1

π(n+ 1)
[cos((n+ 1)π)− 1]− 1

π(n− 1)
[cos((n− 1)πx)− 1]

= 0 n odd.

For n even, n = 2p say, we get an = − 2

π

[
1

2p+ 1
− 1

2p− 1

]
=

4

π

1

4p2 − 1
.

Thus sin(πx) =
2

π
+

4

π

∞∑
p=1

cos(2pπx)

4p2 − 1
.

Putting x = 1/2 gives
∞∑
p=1

(−1)p

4p2 − 1
= −π

4
+

1

2
.

5. We can write the function as a sum of an even and odd functions
f(θ) = f+(θ) + f−(θ) as

f(θ) =

{
1
2(α+ β) + 1

2(α− β) for −πleqθ < 0
1
2(α+ β)− 1

2(α− β) for 0 ≤ θ < π

The symmetric part of f ((α + β)/2) contributes only to the cosine
terms and the antisymmetric part to only the sine terms. Futhermore,
the Fourier series of a constant is a contant so only a0 survives in the
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cosine terms and we have immediately

f(θ) =
1

2
(α+ β) +

∑
bn sin(nθ)

where

bn =
2

π

∫ π

0

1

2
(α−β) sin(nθ)dθ =

α− β
nπ

[− cos(nθ)]π0 =

{
2(α−β)
nπ n odd

0 n even

Thus f(θ) =
1

2
(α+ β) +

2(α− β)

π

∑ (−1)n+1

2n+ 1
sin((2n+ 1)θ).

Putting θ = π/2 gives β =
1

2
(α+ β)− 2(α− β)

π

∑ (−1)n

2n+ 1
, which we

can re-arrange to π/4 =
∑ (−1)n

2n+ 1
.

7. We obtained the Fourier series for x2 in problem 1. Since the Fourier
series of a sum is the sum of the respective series, we need only find the
series for x and add it to that for x2. We have (since x is antisymmetric)
x =

∑
bn sin(nx) where bn = 1

π

∫ π
−π sin(nx)dx. We can evaluate this by

integration by parts or as follows:

bn =
1

π

(
− ∂

∂λ

)∫ π

−π
cos(λx)dx

∣∣∣∣
λ=n

=
1

π

(
− ∂

∂λ

)[
sin(λx)

λ

]π
−π

∣∣∣∣
λ=n

=
1

π

(
− ∂

∂λ

)[
sin(λπ)

λ

]
λ=n

=
2

π

[
−π cos(λπ)

λ
+

sin(πλ)

λ2

]
λ=n

=
2

n
[− cos(nπ)] =

2

n
(−1)n+1.
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9. The inverse transform is∫ ∞
−∞

eikxe−k
2
dk =

∫ ∞
−∞

exp

(
k +

ix

2

)2

e−x
2/4dk

= e−x
2/4

∫ ∞
−∞

e−y
2
dy =

√
πe−x

2/4.

Vector Calculus

1.
∮

(A× r) · dr =
∫
S ∇× (A× r) · dS by Stokes’ theorem.

Now, there are several ways of working out ∇× (A × r). The easiest
is to take A in the z-direction, so A = (0, 0, A), and the origin at
the centre of the circle, so r = (x, y, 0). Then A × r = (−Ay,Ax, 0)

and ∇ × (−Ay,Ax, 0) = (0, 0, 2A). Finally

∫
S

2AdS = 2Aπ, where

S is the unit disc, hence has area π. Alternatively, using the identity,
∇× (A× r) = r · ∇A−A · ∇r + A∇ · r− r∇ ·A we are left with
∇× (A× r) = −A · ∇r + A∇ · r = −A + 3A = 2A and 2A · n = 2A
since A and n are parallel.

We have

1

2

∮
(A× r) · dr =

1

2

∮
A · (r× dr) =

1

2
A ·

∮
r× dr = πA.

Thus
1

2

∮
r× dr = π = area of C.

3.

∫
V
∇ · (r2r)dV =

∫
S
r2rdS. Since the integrand is symmetrical in

x, y and z the value of the intergral is the same on each face. Thus,
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taking the face x = 1/2:∫
r2r · dS = 6

∫ 1/2

−1/2

∫ 1/2

−1/2
(
1

4
+ y2 + z2)(

1

2
, y, z) · (dydz, 0, 0)

= 3

[
y

4
+
y3

3
+ z2y

]+1/2

−1/2
dz

= 3

∫
(
1

3
+ z2)dz

=
5

4
.

This can be checked by calculating the integral directly as a triple
integral using the result that ∇ · (r2r) = 5r2 = 5(x2 + y2 + z2).

5.
1

3

∫
r · dS =

1

3

∫
∇ · rdV =

1

3

∫
3dV = V. For the face x = a/2 of

the cube,∫
r · dS =

∫ a/2

−a/2

∫ a/2

−a/2

(
x2 + y2 +

a2

4

)1/2
a

2

dxdy(
x2 + y2 + a2

4

)1/2
=
a

2
× a× a =

a3

2
.

Summing over the 6 faces gives 3a3 which is 3 times the volume as
required.


