Answers to selected
problems

Derivatives and Integrals

1. The easiest approach is to note that the discontinuities in slope
occur at z = 1 and & = 2 so the function must have an equation of the
form

f(x) =alz =1+ Blz - 2[ +v

where «, § and « are to be found. For z > 2
ar —a+ fx—2B8+~v=—-5x+11

so, equating cofficients, o+ 5 = —5 and —a — 28+ = 11. Proceeding
similarly for 1 < z < 2 and < 1 gives a further set of equations for
a, B and v which can be solved to give « = —6, § =1 and v =7 and
f(x) = —6|z — 1|+ |x — 2|+ 7.We can then check, for example, that for
x <1, f(x)=—-64+6x+2—x+7=5x+ 3 as required.

3. We have y(x) = ze® and hence ¢/ (z) = e* + ze®, y"(x) = 2e* + xe®
and y"(x) = 3¢® 4+ ze®.Thus we guess y™) = ne® 4 ze® as is easily
checked by induction.



The formula for the n-th derivative of the product uv must be valid for
u=xand v = €%, s0 a = n.

If z = x sin(z) the formula gives (2 sin(z))®) = z(sin(z))® +8(sin(z)) (.
At x = 0 this is 8(—1)3 cos(0) = —8.

1 3
5. Completing the square in the denominator gives 1 + = + 22 = (z + 5)2 +

and letting y = v/3/2 the integral becomes

V3
2 d 2 _
[ = el )]
V3 Jiyvsyr+1l V3
_l<ﬁ_ﬁ>_ m
V33 6/ 3v3
Also, since (1 —z)(2?2 + 2+ 1) = (1 — 23)

1 1—z
— —(1—2)(1+23+254+ ...
T Rl B (1—2)1+2°>+2°+...)

sS

Multiplying out and integrating term by term gives

1 1
dx - 1, 1. 15, 15 134
/0 1+x+x2—[33+4:n +7£L' + x 21’ 51’ 8$ ...0
=1 1+1 1+1+
24 5 7 7

from which the result follows.

7.(a) If
t2 A B
(1+8)(2+1)2  1+1) + (241t)2

f(t) =
then
t2=A2+t)2+B(l+t)=A(A+4t+1*)+ B(1 —1).

Comparing coefficients gives A = 1 and B = —4.
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(b) Integrating f(t) between 0 and x gives

/(f = [In(1+6) +42+)""]; mu+xy—Tf%6

provided that the argument of the logarithm is positive, i.e. provided
z > —1.

(c) Put z = 2/5 to obtain ln(%) 25 = 1/3 and hence, exponentiating,

6/5
e < (7/5)3.
(d) (1)
1 4
f(x)zler— (2+ x)?
=l-zx+z?-—234+...— [1—:1:—1—(_2)2(_?))(;)2-1—...]
z? 23
:?zf —'72’4—...

valid for |z| < 1 (ii) From the identity proved in part (b) the simplest
appraoch ois to integrate the preceeding series:

3 2t

x x
In(1 _—— = —- _Z
a1+ 2) - s /Of(t)dt C -
also valid for |z| < 1.

w/2 /2
9. We have J :/ df =7/2 and J; :/ cos(#)df = 1. Then,
0

0
integrating by parts,

w/2
Im = / cos™=1) (0)d sin(6)
0

= [sin(ﬂ) cos(m_l)(ﬂ)};r/2 + /W/2(m — 1) cos™ () sin?(0)do
0



Replacing sin?(#) with 1 — cos?(#) and re-arranging, we get

Hence

_2n—12n-3

J 2n 2n — 2 2
n = 2n 2n—2

-
m+12n—1 371

1
. §J0 and J2n+1 =

We can therefore findJa, / Jan+1, using the values of Jy and Ji:

Jon 2n —12n —3 1 © 2n+12n—1 3

Jons1 20 2m—2 2 2 2n 2m—2 2

_ (324(2712; 1))2 (2n + 1)%

which gives nthe required expression for 7/2 on rearrangement. Now,
since cos(f) < 1 we have

w/2 /2
Jont1 = / cos® T (0)df < / cos®™(0)df = Jap
0 0

and, continuing, that Jop,41 < Jo, < Jop—1. Dividing by Jopiq, it
follows that

< -
Jont1 — Jony1 T Jonga 2n

Jont1 < Jon Jon—1 2n+1

Taking the limit as n — oo gives

JQn J2n—1

1< lim < lim <1

n—=00 Jopy1 — n—oo Jop g

and hence that both limits tend to 1. The final result follows by taking
the limit of the expression for /2 and slightly rearranging the bracket.



Elementary Functions

illon 1 1+1 1
dr |2 1—z/)| 2\142z 1—-2/) 1-—22

/1.tanh_1(ac)dx = xtanh_l(x)—/ljw2dx

1
= gtanh™!(z) + B In(1 — 2?) +c.

Also

d
3. Let sinh™!(2) = y. Then 2 = sinh(y) and 1 = cosh(y)d—y

x
dy 1

SO dx —\/Tin

Also,

/1.sinh_1(x)dx = zsinh(z) — [ \/lfr?d:n

= zsinh(z) — V1 + 2% + ¢

Functions, limits and series

1. The denominator of each term has a factor (x 4+ 2) so we have

1 44+ Ar+1 23 +22—-4

@) = (x+2) x (x —2)
B+ (A-8)2?+ (5—24)x — 2
B x(x —2)

For the expression to have a finite limit the numerator must have a
factor (+2) (or, equivalently, equal 0 for z = —2). Factorising

P4+ (A=8)zx+(5—-24)r—2=(z+2)(z® + (A —10)z + 1)



provided that (comparing the terms in z) 5 — 24 = 2(A —10) — 1 or
A =13/2. Then

f(x)
which tends to 0 as # — —2. From the simplified expression for f(z)
we see that as = — 07, f(z) — —1/(—2z) — +oo; as z — 07,
f(z) = —o0;as ¢ — 1, f(x) — (3/2)/(—1) = —3/2; and as z — o0,
f(x) 22/2% = 1.

3. (a)Dividing the numerator by the denominator (and factorising the
denominator) gives

—622 410z — 2
2(z—=2)(z—1)
b c

a
= 3z4+ -4+ — .
Z+z+z—2+z—1

f(z) = 32+

Cross-multiplying and comparing coefficients (or any other method
forfinding partial fractions) gives

(a+b+c)z* — (Ba+b+2¢)z 4 2a = —62° + 10z — 2

from which a = -1, b= -3 and ¢ = —2.

(b)
1 9 3 z 2\ 2
o Tm
= —JtgtpEt
(c)
b 3 b
f(z)dz = [sz—ln(z)—3ln|z—2|—21n|z—1|]

— 3(b2—a2)—1n(Z)—31n<1_b/2) —2ln<1_b>.

1—a/2 l1—a



If2>b>1 (and a < 1) the term (1 —b) is replaced by b — 1; if a < 1
and b > 2 in addition, (1 — b/2) is replaced by (b/2 —1); if 2 > a > 1
and 2 > b > 1 then 1 — a is replaced by a — 1 also.

5. NOT DONE
62 o
7. We have cos(f) =1 — 5 + m + ... and hence, cos(f)sec(f) = 1
gives '
(a)

92 o i
1_5+5+”' (a0 +a10 + a2 +...).

Comparing coefficients, we get a9 = 0, a1 = 0, ag = a1/2 = 1/2,
az = 0, ag = a2/2 — a0/24 = 1/4 — 1/24 = 5/24, ag = a4/2 — a2/4! +
ap/6! = 5/48 — 1/48 + 1/(30 x 24) = 61,/720.

(b) Hence, sec(0) = 1, and differentiating the series and putting 6 = 0,
sec®(0) = 2a3 = 1, sec®(0) = (4))ayg = 5 and sec® (0) = (6!)ag = 61.

(c) From the series

. [sec(d) —17]
=41

and from I’Hopital’s rule,

[sec(zg - 1}

= lim
0—0

lim
6—0

9. (i) From (1—z) ' =1+z+22+..., we get

dzx 2 23
=—In(l—2)= — ...
/1—:1: n(l-z)=z+o+5+

(ii) Obviously —In(1 —x) > x + 22 /2 because we are omitting positive



terms. Also

2 3 4
T X o
—1In(1 — - S
n(l—x) x+2+3+4+
- PTGy T L1775
1'2 ZUS
< m—i—? g(l—kaz—i-x +. )
372 .’L'3
BRIy
Let x = 1/10 then
10 9 1 1 1 21
In(— = —In(—= = —In(l — —) > — 4 — = =
n(y n(1g n( 10)>10+200 200
3 1

~— %100 % or about % 3 %.

by less th _
YIS 3T T 2700 2700/ 200

(iii) From the series

In(l —z) — 2/2
i DA —e g T2
z—0 x z—=0 I
and from I’'Hopital’s rule,
1
lim =2 =0

z—0

11. (a) /(a: + 1)e"dr = [(x + 1)e*] — /ezdl‘ =ze® +c.
Either similarly, or putting z = —y gives
/(:C — e %dx = /(y +1)eYdy = ye¥ + ¢ = —xe™ " +c.

(b) At z =2, 2¢7% = 34e?, 50 A = L™



X —z]X -2 -X

(c) /2 f(z)dz = [—ze ]2 =2e¢ “—Xe .
9] X

/ f(z)dx = lim f(z)dr = 2e72.

2 X—o00 2

2
(d) / f(x)de = [Aze™]y = 24e® — YV Ae¥ — 24¢® (as ¥ — —o0) =
2 3"
ge

o 2
Hence / f(z)de = (2+ 5)6_2 = 26_2.

Vectors

1. The direction of the line is t = d — ¢ so the line is r = ¢ + \t.
DIAGRAM

For a point r in the plane, r—a is in nthe plane and hence perpendicular
to the normal to the plane n. Thus (r —a)-n = 0.

At the point of intersection, r = ¢ + At and r - n = a - n. Therefore
(c+ At) -n=a-n from which A = [(a—c)-n]/t-n. Hence the pin tof
intersection is
(a—c)-n
r=c+ —t.
t'n
If a=d then A =1 and the intersection isat r = c +t = d.

3 (ii) Interchanging ”dot and cross”: (ax b)-(cxd)=a- (b x (c x
d))=(a-c)(b-d)—(a-d)(b-c).

[ax b] x (cxd)=[axb]-dc—[axb]-cd or, in temrs of the scalar
triple product, [a, bd]c—[a, b, c]d. (Equivalently [b, c,d]a—[a,c,d]b.)

5. For simplicity we put the origin at O. Then —a+k = %(b —a) from
which a —b = 2a — 2k. The diameter is |b —a| = 2|]a— k| = 2[(a—k) -
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(a—k)|"/?2=2(a%—-2a -k+ k)2 =2(4-2+1)1/2 =23
7. i) r=c+ra+pub

(ii) Taking the scalar product with a x b givesr- (ax b) =c- (a x b).
Putting in the given values we get ax b = (—11,7,1) and —11lx+ 7y +
z = 4 as the equation of the plane.

(iii) The lineisr =c+v(ax b) or (z,y,2) = (1 — 111,24+ Tv,1 + v).
This cuts the (z,y) plane when 1+ v = 0) i.e. at d = (12, -5,0).

(iv) The z—axis is y = 0, z = 0 so the plane cuts the x—axis at
x = —4/11 so my = (—4/11,0,0). Similarly ms = (0,4/7,0) and
ms3 = (O, O, 4).

(v) The sides of the tetrahedron are s; =d — m; = (%, —5,0), s9 =
d—my=(12,-22,0) and s3 =d — m3 = (12, —5,—4). The volume of
the tetrahedron ( base x height) = (s -sg x s3 = 912/77.

9. The unit normal n to the plane n-r = p is here n = (3, —1,1)/V/11.
The angle 6 between n and a is given by cos(d) = n - p/[n||p| = (3 +
2)/vV11v/5 = \/(5/11. Thus 0 = 47.6°. The line r = \a cuts the plane
at Aa-n =pie. at A =1/cos(theta) or r = 1/11/5(1,0,2).

11. The line is r = v/3/2k + A\/v/3(i + j + k) so point at unit distance
from O is given by |r| = 1 or (A2/3 + A2/3 + (A\/V3 +V3/2)?) =1
from which A = —3/2 or 1/2 Taking A = 1/2 the line ls is r = ub =

11 V3

Mas ave T T5E = 3
perpendicular to /; and I3 hence in the direction n =t xb = (3, —3,0).

The plane is therefore r-m =a-n or 3z — 3y = 0.

(1,1,4). The normal to the required plane is
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Matrices
1.
1—\ 3 0
det 3 —2—-X -1 =0
0 -1 1=\
if

1= N[(=2 =N 1=\ =1 = 3(1-X) =0

SO
A=1 or N4 A-12=0

henceif A =1, A = 3 or A = —4. To find the eigenvectors x we solve the
simultaneous equations (A — Al)x = 0 for these values of A in turn. The
corresponding eigenvectors are k(1,0,3), k(—3,—2,1) and k(-3,5,1).
We can check that the eigenvectors are mutually orthogonal,. For ex-
ample: (1,0,3)-(—3,5,—1) = 0. Now

1 0 3 1 3 0 1 -3 -3
-3 -2 1 3 -2 -1 0 -2 5
-3 5 1 0 -1 1 3 1 1

1 0 3 1 -9 12
=-3 -2 1 (0 -6 =20
-3 5 1 3 3 —4
10 0 0
=0 48 0 )
0 0 -—-140
3. Let
1 3 2
A=1[2 1 3
3 2 14+u
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The system has no solution if det A = 0 which occurs for p = 18/5.
Kramer’s rule gives

1 3 2
y=—det|4 5 0 /detA=0
3 2 1+p

if 4 = 1. Then, similarly z = 39/(18—5u) = 3 and x = 4—3y—2z = —2.
Alternatively we reduce the system to triangular form:

R3 — R3-R2-RI1

13 214 R2 — R2-(2xRl) 1 3 2 4
2 1 315 0 -5 —-1|-3
3 2 1+p|0 0 -2 pu—41]-9
R2 — R2x-5 R3— R3x -2
R3 — R3—R2) 3 2] 4
> 0 10 2| 6

0 0 18—=5u|39

From which we can read off the results.

1—-A 0 2
det 0 —1-A 0 =0
3 0 2-A

if (1= A\)(=1=A)(2=A)+6(14+A) = 0 hence if A = —1 or 4A2—3A—4 = 0
or A =4 or —1 (again). Thus we check

2 0 2 2 0 2 -3 0 2 10 0 O -3 0

000 0 00 0 -5 0|=(0 0 O 0 -5

3 0 3 3 0 3 3 0 -2 15 0 15 3 0
=0.

Expanding (A +1)(A +1)(A — 4l) = 0 gives

A3 — —2A% —TA —4l =0
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and hence (multiplying through by A=! and re-arranging)
AA =A% —2A — Tl

which works out to

L[(~2 0 2
A= 7o -4 0
30 -1

We can check this by showing it gives the unit matrix when multiplied
by A.

Complex Numbers

1. The rule for quadratics gives
1r_. .
z:§[5zi —25—4(2—7)}

or z = 2(5i £ /3 — 4i). We therefore have to find this square root in
the form a + ib. It is (marginally) easier to take the square root of
3 4 4i since this is in the first quadrant so all angles are positive, and
then to take the complex conjugate. To take the square root we write
3+ 4i = /32 + 42¢" = 5¢™¥ where tan(vy)) = 4/3. Thus, sin(z)) = 4/5
and cos(y)) = 3/5. We calculate cos(t/2) and sin(¢/2) from the double
angle formulae: for example, 1 — 2sin?(1)/2) = cos(y)) = 3/5. Finally
V3 —4i = \/5e /2 = \/5(cos(¢)/2) — isin(/2)) = 2 —i. So for the
solution of the quadratic we have z = 2i+(1—14/2) = 1+2i or —1+3i.
Finally Q = (z—21)(2—22) = (2 —1—2i)(2+1—3i) which can (should!)
be checked by multiplying out the brackets.

3. We have

e* = exp(r cos(f) + irsin(0)) = " (cos(r sin(0)) + i sin(rsin(6))).
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So Im(e?) = e sin(rsin(f)) and Re(e?) = e cos(rsin(8)).
Then
Im(e®) =Im(1+ 2z + %,22 +...)

=Im(z) +Im(2%/2!) + ...

= Im(re®) + Im(r2e®?) + ...

= rsin(f) + %7‘2 sin(20) + %r?’ sin(360) + ...
Thus

lim 1671 °os(0) sin(r sin(0)) + . . ] = lim [sin(@) + L sin(20) + ...

r—0t | T r—0t 2!

= sin(6).

The same result is obtained from I'Hopital’s Rule by differentiation
with respect to r.

5(1) 14 e =1+ 2% = 267 (7 + /%) /2 = 2¢' cos(¢)).

n

(i) (1 4 )™ = 1 + ne? + (2> e + ... Thus

Re(1 + )" =1+ ncos(f) + <;L> cos(20) + ...

= Re(2¢% cos(p))"

— (2c05(9))" cos(n)
which is the required result. For 27/3 < 6 < 47/3 we have 7/3 <
¢ < 2m/3 hence 0 < cos(¢) < 1 and hence (cos(¢))” — 0 as n — 0.

Also |cos(ng)| < 1 so C,, — 0 (with increasingly rapid but smaller
oscillations).

7. Let P(2) = 23+ (2 +i)2% — (1 + 4i) — 2 + 3. Then P(i) = 0 by
substitution and hence, by inspection, P(z) = (z —i)(2% + (2 + 2i)z —
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(3 +2i)) = 0. The solution of the quadratic is z = 1 +i £ /(3 + 44)
Then /(3 + 4i) = 2 + i from problem 1. Thus, z = 3+ 2i or z = —1.

9.
n ,ind

exp(zei®) = Z ae™ Z [x” C(:!(ne) N 2" sj;!(ng)]

n!

1 . . ; . .
=3 (exp(weze) ++ exp(xe_’9)> + % <exp(xew) — exp(xe_w)>
= ") cos(z sin(0)) + ie® @ sin(x sin(6))

x? 3 xt
= <1 + x cos(6) + o7 cos?(6) + 37 cos®() + o cos’ 0+ .. >

z? zt
X <1—2!sin2(0)—|—4!sin4(0)+...> +i(...).

Comparing the real coefficients of x*:

1 IR SR PP L o4 L 4
1 cos(40) = —7 cos (0)sin“(9) + o 5in (0) + 21 08 (9)
or cos(40) = —6 cos?(#) sin?(0) +sin*(6) +cos? §. Considering the imag-
inary parts gives sin(46) = 4 cos?(#) sin(#) — 4 cos(6) sin®(#).

Differential Equations

1. For a trial solution y = eP* the auxiliary equation is p? + 3p + 2 =
(p+2)(p+1) =0 so the CF is yor = ae™?® + be ®. For a PI we write
cos(z) = Re{e™} and solve y” + 3y’ + 2y = € and take the real part.
We try yp; = Ae™® giving —A 4+ 3iA+ 24 = 1 or A = (1 — 3i)/10.
Thus yp; = Re{(1—3i)e”/10} = - (cos(z) + 3sin(z)) and the general
solution is y = yor + ypr. Puting in the boundary condition y(0) =
11/10 gives a+b =1 and 3/(0) = —7/10 gives 2a + b = 1 from which
a=0and b= 1. Thus the solution is y = e~ + -:[cos(z) + 3sin(z)].
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3. For a trial solution y = eP* the auxiliary equation is p?> —p — 2 =
(p—2)(p+1) =0s0p=2or p=—1. The solution satisfying y — 0 as
x — +00 is y = ae”® and then y(0) = 1 requires a = 1 so the required

solution is y = e~ *.

5. For the CF we get zop = ef(Ae + Be™™). For the PI we try

z = (a+ bt)e*"
2= [2i(a+ bt) + ble*"
5 = {2i[2i(a + bt) + b] + 2ib}e*?.

Substituting and comparing coefficients of powers of t we get
(=2 +4i)a+ (—2+4+4i)b=2 and b(1+ 2i)t = 5t,
hence a = —2 and b = (1 — 2i). The general solution is therefore
z = e'(Ae + Be ™) + [(1 — 2i) — 2],

The boundary condition z(0) = 0 gives A+ B = —2 and 2(0) = 0 gives
i(A—B) = —146i—(A+ B) from which A = —% —2j and B = —3 +2i.

7. We solve 3" + 2y’ + 2y = Im{e?**} and take the imaginary part of
the solution. The solutions of the homogeneous equation are e(~1%0)7
so the CF can be written as yor = e”[acos(z) + bsin(z)]. For a PI we
try y = Ae®” giving A = —7-(1 + 2i). Then Im{—5(1 + 2i)e**} =

—% sin(2x) — %cos(2x). The general solution is

1 1
y = e “[cos(x) + bsin(x)] — 10 sin(2zx) — £ cos(2x)
and the boundary conditions give, from y(0) = 0, a = 1/5 and from
y(r/2) =0,b= —%e”/z.

: : _ 3t —4t 1t
9. The general solution is y = ae’* + be — 1€

This remains finite as ¢ — oo if a = 0. Then, y(0) = a + b — 5 and
y'(0) = 3a—4b+ 1—12 Putting a = 0 and eliminating b gives the required
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relation:

4y(0) +¢/'(0) = —1/4.

11. (i) We have

¢ an arbitrary constant, and hence y = sin(x?/4 + ¢).

(ii) The integrating factor is exp (/ COS(@) dr = exp </ dsm(m))

sin(x) sin(x)
= exp|In(sin(x))] = sin(z) so the equation can be written as

1
sin(z)

(ysin(x)) = 2cos(x)

from which ysin(z) = —sin?(z) 4 c or y = —sin(x) + ¢/(sin(z)).

(iii)y = ae3® + be, with a and b arbitrary constants.

(iv) The auxiliary equation has the repeated root p = 2 so the solution
is of the form y = (a + bt)e?* with a and b arbitrary constants.

13. (i) We write this as y'/y = 322 which integrates to y = Aexp(z?).
(ii) Multiplying through by sin(x) the equation becomes (cos(x)y)’ =
2z which integrates to y = (22 + ¢)/ cos(x).

(iii) Since the auxiliary equation has 5 as a repeated root the solution
is y = (a + bx)ed®.

(iv) Taking y = Ae® as the trial solution for a PI gives A = 1. The
general solution is y = ae® + be3® + ¢*.
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Multiple Integrals

1. dV = r?sin(0)dOde.
We have

I= /%/ /0 — explir cos(#) — er]r?d(— cos(0))drde

_ _or /0 [ exp(zrcos(@))} S

i 1
S . .
— 27”/ [efzrfer o elrfer] dT‘
0

g o o0
) e r—er e’b'f’ Er
=271 | — —
0

1+ € 1 —€
1 1
=27Ti[—. =+ - ]
1+ € 1—€
_ 47
C14¢€2

from which the result follows by taking the limit ¢ — 0.

3. The element of solid angle on the surface is dQ2 = dA cos(i)/r? where
dA = ad¢dz, r = (a® 4+ 22)Y/? and the angle between the radial vector
from the origin and the normal at a point on the surface is given by
cos(i) = a/(a® 4+ 2z%)1/2. It remains to figure out the limits of z and
¢. The limits for z are +x i.e. tacos(¢). Since z is positive ¢ must
lie between —m/2 and +7/2. Putting this together gives the required
result.
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Partial Derivatives

0
1. z = rcos(H) y = rsin(f) implies 72 = 22 + y? so 2ra—r =2z or
T

or or y
D7 Similarly 2 = 2.
p . . Similarly ay "
If g(r,0) = f(r)sin(f) = yF(r) then
Q) @ dF or @ﬂ

g dr axd_ r dr

y
e

(“)ay + rodr
(iii)

Pg g _[y_wyz oy ' W|dE  fayz ] LF

ox2  oy2  |r rZr r 3 r | dr rr  r2| dr?

er | air
=Y dr? = rdr

if
3 1 ’
F' L2 — — (3 ~0
T 3 (r°F)
which integrates to F' = B/r? + A and hence f(r) = B/r + Ar where
A and B are constants.

3. flzyy) = 2t + 222+ 32y +3yso fy =32z +3 =0ifx = -3
and f, = 423 + 42 + 3y = 0 if y = 40. So the stationary point is
(—3,40) and f(—3,40) = —141. Then fuz(—3,40) = 1222 + 4 = 112,
fay(—3,40) = 3, and fy,(—3,40) = 0 so the Taylor series is f(z,y) =
—141456(x+3)24+3(z+3)(y—40) = —1414(z—3)[56(z+3)+3(y—40)].
Thus, putting for example x = —3 + 3/56 we find f(z,y) > f(—3,40)
if y > 40 and f(z,y) < f(—3,40) if y < 39. Thus the stationary point
is neither a maximum nor a minimum.

5. f(z,y) =2* =222 +9> —3yso f, =42 — 42 =0if x = 0 orx = +1
and f, = 3y> —3 =0 if y = £1. Then fu, = 122> — 4, f,,, = 0 and
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fyy = 6y. Thus, if A(z,y) = foxfyy — fay?, for the six stationary
points we have

(a) A(0,1) = =24, fyr <0, maximum
(b) A(0,—1) = 24, saddle

(c) A(1,1) = 48, saddle

(d) A(1,-1) = =48, frzr > 0, minimum
(e) A(—1,1) =48, saddle

(f) A(—=1,-1) = =48, fzz > 0, minimum

Near (1,1), f(1.1,1.1) = =3 +4(x —1)2+3(y—1)2 = =3+ 7x 1072 s0
the percentage error is 7 x 1072/3 ~ 2.3%. Near (2,2) we can use the
binomial expansion to find the linear terms in the Taylor series (the
quadratic ones will be smaller) so f(2+ §,2 4 €) ~ 16(1 + 25) — 8(1 +
0) +8(+3€¢/2 — 6(1 +€/2) = 10+ 246 + 9e. Thus we take § = +0.2 and
€ = +0.2 for the maximum error giving f ~ 16.6 so the percentage error
is 6.6/10 or 66%. The function is slowly varying around a stationary
point, so a small error in the arguments gives only a small (second
order) error in the function. Conversely, near a stationary point a very
accurate measurement of the function is required to fix the arguments.

7. fz,y) =xy+1/z+1/yso fo =y —1/22 =0 if y = 1/2? and
fy=2—-1/y* =0if z = 1/y> = 2 (provided = # 0). The only
solution is (1,1). Then f,;(1,1) = 2/2® = 2 and fu,, = 1, fyy = 2.
Thus, feefyy — gy =3 >0 at (1,1) so this is a saddle point.

9. flz,y) =In(z) —x/y?> =2y so fo = 1/ —1/y> = 0 if 2 = y?,
(provided z # 0) and f, = —2z/y3—2 = 0 if = —y>. Thus, we require
y? = —y3 which gives (1, —1) as the only solution. Then f,.(1,—1) =
—1/2% = =1, foy(1,—-1) = =2/y3 = 2 and f,,(1,-1) = 6z/y* = 6.
Thus foofyy — f2, = —10 < 0 at (1,—1) and fz, < 0 so this is a
maximum.
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Partial Differential Equations

1 1 x+ct
y(x,t) = iF(aj —ct) + §F(m‘ +ct) + % /xct G(s)ds
Hence y(z,0) = F(z)+4 [ G(s)ds = F(z) and dy/0t(x,0) = —SF'(z)+
SF'(z) + £[cG(z) — (—¢)G(x)] = G(z). That this is a solution of the
wave equation can be verified by direct differentiation using 0F(z —
ct) /ot = —cOF (x — ct)0x = cF’ etc.

3. Near the origin the waveform is Ja(l+ (z—ct))+ 3a(l— (z+ct)). At
x = 0 both contributions vanish for ¢ = [/c. The parts of the waveform
at rest fort > [/care x < —ct—1, x > ct+land —ct+l <z < ct—1. It is
perhaps easiet to see this from the picture, rather than algebraically, by
noting that the evolution consists of one half of the triangular waveform
moving to the right and the other half moving to the left.

5. Seeking a solution of the form y(z,t) = X (z)T'(t) we deduce that
T = —w? and X’ = —w?/c? hence that y is a sum of products of
cos(wt) or sin(wt) with cos(wz/c) or sin(wzx/c). The condition y(z,0) =
Bsin(wx /1) requires w = en/l and y(z,t) = sin(nx/l)(Asin(ret/l) +
Bcos(rwet/l). Finally, dy/0t(xz,0) = vsin(rz/l) gives A = lv/7c.

Evaluating E = 9% + (mc/l)?y? with y = sin(wz/l)(B cos(mct/l) +
(lv/mc)sin(met /1)) gives E = sin?(mz/1)(v? + B?)(me/1)? which is con-
stant in time at each value of x.

7. The separable solution satisfying the conditions at x =0 and z =1
is y(z,t) = Y, (an sin(nmet /1) + by, cos(nmet /1)) sin(nmwx/1). To satyisfy
Jy/0t(x,0) = 0 we set a, = 0 and to satisfy y(z,0) = asin(rz/l) +
bsin(37wz/l) we must have

y(x,t) = acos(wet/l) sin(mwz /1) + beos(3mwct /1) sin(3mz /).
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9. The general solution gives

x+ct
y(z,t) = %e_(””_Ct)Q + %e_(””'mﬁ + ! / cve ™ dx
x

270 —ct
_ %ef(xfct)z 4 %ef(x+ct)2 4 % |:_67x2:|l’+6t
x—ct
_ Ze—(ac—ct)2 + 16—($+Ct)2

as required. After a sufficiently long time the maximum displacement of
the string will be % (the peak moving to the right). Thus the maximum
will be at x = 0 as long as the displacement at = 0 is greater than %,
hence for a time given by y(0,t) = %6_(05)2 + ie_(Ct)Q = e ()’ > 3/4

ort<1 [ln(%)]lﬂ.

Fourier Series

1. f(0) = 0*(—

m < 6 < m) is an even function so we seek a series
representation f(0) =

$ag + Y, an cos(nd). We have

ap = 6%df = 27%/3

—T

/ 62 cos(nf)df

—T

_1 [Sin(”meﬂr _ 2 /7r 6 sin(nd)do

n

_ -2 [_QCOS(TZ@} n 22/ cos(nd)do
.

n -7

Ap =

i

= —— [—mcos(nm) + 7 cos(—n)]
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n

2 o
Thus 6% = = + 42 (=1) cos(nb).
1

3

2 +1
. ) T (=)™
Putt =0 — = D
utting gives B g 3

3. We write sin(rz) = ag + Y ap cos(nmz) with
1 ] 2 1
ap =2 [ sin(nz)dr = — [ cos(nz)], = 4/7
0 ™
1 1
an = 2/ sin(mz) cos(nmx)dr = / [sin((n + 1)7z) — sin((n — 1)7z)] dx
0 0

= b [cos((n + 1)7T$)](1] — [cos((n — 1)7“’3)]5

m(n+1) m(n—1)
1 1
=0 n odd.
F 9 ; 1 1 4 1
or n even, n = 2p say, we get a,, = —— — = — .
’ P SaY, WE BEE n W+l 2p—1| ndp?—1
2
Thus sin(rz) = — + Z CC:;) ]iwf .
Putti 1/2 T4l
utting z = -4
& 479

5. We can write the function as a sum of an even and odd functions

f(0) = f1(0) + f-(0) as

Lla+8)+ %(a —B) for —mleqh < 0
3(a—B) for0<f<m

The symmetric part of f ((a + )/2) contributes only to the cosine
terms and the antisymmetric part to only the sine terms. Futhermore,
the Fourier series of a constant is a contant so only ag survives in the
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cosine terms and we have immediately

£(0) = %(a +8)+ 3 by sin(n0)

where
2 [T1 . a—p 7r 200=8) 1 odd
by, = 7T/0 §(a—ﬁ) sin(nf)df = e [—cos(nd)] = { 0" 1 even
_ _1\n+1
Thus f(0) = %(a +B) + Q(QW b) > (27111 —sin((2n + 1)0).
Putting 0 = 7/2 gives 8 = %(a +5) — 2(a7: b) Z 2(;:_)”1, which we

(="
n+1

can re-arrange to m/4 = Z

7. We obtained the Fourier series for 22 in problem 1. Since the Fourier
series of a sum is the sum of the respective series, we need only find the
series for x and add it to that for z2. We have (since  is antisymmetric)
x =Y bpsin(nz) where b, = L [7_sin(nz)dz. We can evaluate this by
integration by parts or as follows:

(—88)\) /_: cos()\i)dac

(_;}\) [snl()\)\:z:)}_7T
0 sin(Am

(o) 57

|:7T cos(Am) N sin(w)\)} N

by, =

A=n

A=n

A A2

N N N N

\)

= [— cos(nm)] = —(—1)”*1,

3
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9. The inverse transform is

0 00 . 2
/ kT o=k g — / exp (k + z;:) e~ /4 dk
. .2

Vector Calculus

1. §(Axr)-dr= [(V x(AXxr)-dS by Stokes’ theorem.

Now, there are several ways of working out V x (A X r). The easiest
is to take A in the z-direction, so A = (0,0, A), and the origin at
the centre of the circle, so r = (x,y,0). Then A x r = (—Ay, Az,0)

and V x (—Ay, Az,0) = (0,0,24). Finally /2AdS = 2Am, where

S is the unit disc, hence has area . Alternativgly, using the identity,
Vx(Axr)=r-VA—-A -Vr+AV . -r—rV-A we are left with
Vx(Axr)=—A -Vr+AV .-r=—-A+3A =2A and 2A -n=2A4
since A and n are parallel.

We have

;f(Axr)‘dr:;?{A-(rxdr):;A-frxdrzﬁA.

1
Thus%rxdr—ﬂ—areaof(].

/ V- (r“r)dV = / 2rdS. Since the integrand is symmetrical in

xz, y and z the value of the intergral is the same on each face. Thus,
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taking the face z = 1/2:

12 1/2 1 1
/rr dS—6/ / +y +z)(§,y,z)-(dydz,0,0)

12172 4
+1/2

3{ +y+zy} dz

1" 73 1
:3/(1+22)dz

3
5
-2

This can be checked by calculating the integral directly as a triple
integral using the result that V - (r’r) = 5r2 = 5(22 + y2 + 2?).

5. ;/I‘-dS:;/V-rdV::1))/3dV:V.Forthefacex:a/20f

the cube,
a/2  pra/2 1/2 dxd
/rdS / / <m+y+2> 5 N
a/2 a/2 <x2+y2+%)
% axa®
=gz Xaxa=—.

Summing over the 6 faces gives 3a® which is 3 times the volume as
required.



